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1. INTRODUCTION

This paper is part of the thesis submitted by the writer to Johns Hopkins University for
the degree of doctor of philosophy. The Committee on Aerodynamics has approved its publi-
cation as a technical report of the National Advisory Committee for Aeronautics.

Aerodynamics is largely an experimental science, but certain of its problems have been
brought within the scope of mathematical analysis. This is especially true with regard to wing
profiles, airship bodies, and lifting surfaces. The most fruitful method for the mathematical
investigation of lifting surfaces is the airfoil theory originated by Prandtl® and Munk? and
extended in various directions by them and others, particulsrly Lieutenant Betz.? The present
paper is concerned for the most part with the application of the airfoil and twisted wing theory
to the calculation of the lift and rolling moment of airplane wings. Most of the results arrived
at are strictly true only for wings of elliptic plan form. The following investigation aims to
give some indications of the accuracy with which the results can be applied to the wing forms in
actual use.

On account of the importance of Munk’s twisted wing theory, it has been thought worth
while to give an outline of it before applying the method to the problems freated.

ASSUMPTIONS, DEFINITIONS, AND FUNDAMENTAL FORMULAS

In this paper the air will be considered as a frictionless, incompressible fluid of constant
density.

The velocity of flight relative to the undisturbed air will be assumed constant in magnitude
and direction. It will be denoted by V, and for convenience supposed to be horizontal.

Since it is frequently necessary to replace sines and tangents by their arcs in the applica-
tions of the airfoil theory, it is useless to attempt more than three-figure accuracy in numerical
results. All numerical results will therefore be given to only three significant figures.

The aspect ratio of a wing is defined as the ratio of the span to the average chord. Denoting
aspect ratio by @, we have

21 2l 4P
a= 5 = =
average chord area ares
5]

Hence,

a,=% for an elliptic wing
L'l

2 .
= C—Z for a rectangular wing,
‘G

where 2/ =length of wing, and
co=maximum chord of the wing.

' 1. Prandtl: “Tragfiiigeltheorie” I and II Mitteflung. Nachrichten von der Kgl. Gesellschaft der Wissenschaften. Math. Phys. Klasse
Gottingen, 1918, 1919,

t M. Munk: “Beitrag zur Aerodynamik der Flugzeugtragorgane.” Technische Berichfe der Flugzeugmeisterei, Bd. II, 1918. ‘“Isoperi-
mefrische Aufgaben aus der Theorie des Fiuges.”” Dissertation, Gottingen, 1918. Translated into English as “The Minimum Indneced Drag of
Airfoils,”” Washington, 1921. N. A. C. A. Technical Report No. 121. “The Twisted Wing with Elliptic Plan Form.” Technical Note No. 109.
National Advisory Committee for Aeronautics, Washington, 1922, “General Theory of Thin Wing Sections,'” National Advisory Committea for
Aeronautics Technical Report No. 142, 1922 .

% A. Betz: “Beitriige zur Tragfliigeltheorie mit besonderer Berticksichtigung des einfachen Rechteckigen Fliigels’’ Dissertation, Gsttingen, 1919
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In order to simplify the analytical treatment, the aspect ratio is always assumed to be large,
so that the wing is replaced by a “lifting line.”  The “downwash speed” at a point z of the lift-
ing line is the mean velocity component of the air low in the vicinity of the point «, at rxghb angles
to the velocity of flight, taken, say, along a small circle around the lifting line as axis. Its
magnitude can be computed from the distribution of the vortices running off from the trailing
(rear) edge of the wing and is given by the formula *

+1
1
4z ldo::c’—:c

USRI § 3

W=

where w denotes the magnitude of the downwash speed and T is the circulation around the wing
at the point z=2'.

The lift is the component of the air force at right angles to the velocity of flight. The entire
lift of the wing is denoted by L.

The density of lift, or intensity of the lift,is the lift per unit length of wing. Itwillbedenoted

by L', and its value is Cé—]x—l' The relation between density of lift and circulation sround the

wing segment at all points is given by the formula *

L’=%%=pVF,

where p is the density of the air and V is the velocity of flight. In general the circulation is
variable along the span of the wing and drops to zero atits ends. Hence T is a function of z and
furthermore one which we may dlﬁerentlate with respect to z. Taking the derivative of Z’

with respect to z, we get
ar’ cZI‘ ar 1 dL’

[ Sk Py

Substituting this value of %g in the formula (1) for doﬁn\vash speed w, we get

L dL'- @
47rpV o @ —p e (B)

In an infinitely long wing (with all cross sections equal and parallel) the density of lift is
constant along the wing and the circulation is the same at all points, Hence %—=0 and w=0

by Equation (2). We thus see that the downwash speed is zero for an infinite, cylindrical wing.
The geometric angle of attack at any point along the wing span is the acute angle which the
chord of the wing at that point makes with the direction of flight relative to the undisturbed air.
It will be denoted by «, and is usually variable along the span.
The tnduced angle of attack at any point is the mean angle through which the air at that

point is deflected downward. Its value is arc tan 5 V’ and it will be denoted by ;. We usually

write
w

O:fi=T7 X g g Uy -(3)

The effective angle of attack e, at any point is the acute angle which a line fixed with respect
to the section at that point makes with the resultant current of undisturbed air. The direction of
this line is so chosen as to give zero lift at the angle of attack zero. In the case of an infinitely
long cylindrical wing, it is the same as the geometric angle of attack. For a wing of finite length

its value is ,
= g = Qe e o e e ceee e e e (4)

¢ Prandtl, Applications of Modern Hydrodynamics to Aeronautics, N. A, C. A. Technical Report No 116, p. 37, 1921
& Prandtl, Applications of Modern Hydrodynamics to Aeronautics, p. 49, -
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The drag acting on a wing segment is the component of the air force acting on the segment
parallel to the direction of motion. It is generally a function of # and the whole drag of the
entire wing will be denoted by D. The drag which is considered in the airfoil theory can be
computed by first computing the downwash speed w.

Since the air force on a wing segment is always directed at right angles to the relative motion
between the segment and the air, it is not directed at right angles to the direction of motion but

inclined toward it by the angle %7, thus having a horizontal component.® Hence the relation

between lift and drag is given by the formula

w
D=+
L
(s
B ,
[ &

Direction of flight

Y

Fic. 1

The relations between the lift and drag and the three angles of attack are illusirated by
Figure 1. ’ : '
The relation between density of lift L’ and wing form ¢ is given by the formula

L/'=27 g 6« oo e —a 2 (B)
where ¢ is the length of the chord at the point considered, «, is the effective angle of attack at

that point counted from the angle of zero lift, and ¢ is the dynamic pressure=;__ p V2

We can derive formula (6) as follows:
L'=pVT
Prandtl writes 7 )
T'= Velo,cet+¢5)
and states 7 that ¢,=#. Substituting this in the formula L'=p VT, we get
L'=pV?c(ras+c,)

Defining «, so that L’=0 when «,=0, we get ¢,=0 and then _
L' =pV%rae=27 e + % pVe=2x as ge. ) 7 -
The contribution to the rolling moment at any point along the wing is the moment of the

'ntensity of 1ift (at that point) about the longitudinal axis of the wing. Denoting it by If, we -
1ave for the whole wing ’ '

+1 +1 ]
1[=f , xL’cZa;=2a-gf 0o CF dz.

§ Prandt], Applications Aof Modern Hydrodynamics to Aeronauties, N. A. C. A. Report No. 116, 1921, p. 36. )
T Prandtl, N. A. C. A. Report Na. 115, p. 41, 1821
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2. THEORY OF THE TWISTED ELLIPTIC WING

By a twisted wing is meant a warped wing or one in which the geometric angle of attack
varies from point to point-along the span.

Since all vortices created by the motion of the lifting line are concentrated in a surface
approximately plane and since these vortices are approximately straight and parallel to the
motion, the components of the air flow in a vertical plane through the lifting line can be assumed
to be a two-dimensional potential flow, with all singularities at the points of the lifting line.
The velocity of downwash is therefore derivable from a velocity potential, and hence the method
of the theory of functions of a complewx variable are applicable. These facts, together with an
important theorem (stated later on pii6) connectlng lift and velocity-potential, led Munk?® to

write the complex function
SF=F i (D)

ot ip—iB. VI <§+é\/1~(—§)2)n-- ISR ¢

where n denotes any positive integer, By, a dimensionless constant, 1 the veloeity of flight, and 2z
the complex number z+4y. The z-axis is taken along the wing length, the y-axis is vertical,
and the length of the wing is taken as 2. The wing tips are therefore the points z= 41,

It is to be observed that at all points except 2= X[, F, is a double-valued function of 2,
each value being a single-valued analytic function of z.

The substitution

z=] cos 8--__-_---_-_-_--------------------(9)
makes equation (8) assume the more convenient form
Fo=1BV1(cos 0 £ 48N )P oo mecncn e ea o (10)
The two values of # are therefore
Fl=g +i,=tBVI (cos f+isin O)*=iBVI{cos nf+isin n8) .. .. .. .. .. .. .(10a)
F' =g, +iy,=1BV1 (+cos 6—1isin )*=1BVI {cos nf—4 sin né) .. .. ... .. (10b)

¢ is real at points along the axis of reals between —17 and I, that is, along e wing, and
these are the only points in which we are interested. Hence the twd values of F along the

wing are ) ) N
Fi=¢,+ 4, =1BVI (cos nf+1 sin nd)

and
F,=p,+,=1B VI (cos nf—1 sin nf)

These equations show that F'is dlscontmuous along the ng and that the amount of the

discontinuity is
G~ =2BVISIN N0 e e cm e e e ceee e (11)

The density of lift can now be found by means of the following theorem due to Dr. Munk.?
The density of lift perpendicular to the lifting line s proportwnal to the discontinuity of the
velocity-potential and has the value
L'=2pV (0,— ¢y
where ¢ denotes velocity-potential and ¢,— ¢, is the difference of velocity-potential on opposite
sides of the wing. Hence the density of lift is here

L'=4pBV¥sinnb6=8Bglsin nb. . ..o ......(12)
where -
Vz

L\D! -t

8 Max M. Munk, “Elemments of the Wing Section Theory and Wing Theory.” Techn_:‘cal Report No, 181, N. A. C, A,, 1924,
¥ “7he Minimum Induced Drag of Aerofoils.” Technical Report No. 121, p. 14, N. A. C. A., 1921,
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For the points along the wing we have
z={ cos 6, from (9).
Substituting this value of z in the equation of the wing plan form,

2 2
Z_+C_=1
&,

we get c=c¢, sin 8. Recalling now the formula

L' =2% o qc,
we have .
27 @ ¢, 5in =8 Bl sin nf
or
4Bl sin ng

RS 2
wC, Sin 6 (13)

2

To find the downwash speed w and therefore the induced angle of attack «; we must
(]

calculate the partial derivative % . This is most easily done by differentiating equation (10}
with respect to z by means of the formula

dF_dF 48

dz d¢ dz
Reference to Equation (11) and Munk’s theorem for density of lift shows that in order to
obtain lift we must take ¢ for velocity-potential. Then we have from (10}, remembering that

aF_d0_Qo -
dz oz oy
—%——'w— , BV n sin nd
oy ' ' smnég -
Hence the induced angle of attack is _
w BV nsin nd
e o U 123
¥ sin 6
ae 41
and therefore —2= e e e e (148)
o TC

for all points along the wing.

Hence, for a given value of n the ratio of the effective to the induced angle of attack is
the same for all points along the wing span.

It is the simple character of the distributions of lift having this property which simplifies
the present problem for the special case of the elliptic plan view.

Since the geometric angle of attack is the sum of the effective and induced angles of attack,
we getb

wCy T wTCN

4 al J*e

Substituting the value of o, from (13), we get

oo (147G 481 sin n (15)
€ "4l ) we,sind
Since ' -
L/ =2ra.qc
and
= Qg ] - Ry ~ ;':A’é_-ﬂ-
o= . FRLAELY) Y Fo | et s o T
1 TCN P e
T ~ TR T T e
we have

L'=8 Bql sin nf o
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Thus far we have been dealing with an elliptic wing of ““harmonic’ twist, each value of n
giving a different type of twist and large values of n giving more changes of direction of the
twist than small values. Since the angle of attack and density of lift can always be expressed
as a Fourier series, we can get the most general distribution of lift by giving n all positive values
and superposing all the particular distributions. Hence for the geometric angle of attack we
may write '

sin 4 sin 26 sin 36 sin né
ag:a‘sin9+a sm(?+ ¥sin 4 o Cing
=(ag)1+(ag)2 - +(ag)nT"‘
or
agsin =F@)=a, sin 0+ a, 80 260+ -~ +ansinnb+ ... __(16)

The series on the right is a Fourier series, and if we assume «p to be known we can
determine the coefficients a, by the usual method.
From the relation

%g
= ren
I4—3— a7
we see that the effective angle of attack is
agina asin 28 sin n 4
_'sing  *sind .. “sing
IR 142K et 1+nK H o (AT)
where '
=T
K= 41

The density of lift is therefore
L'=2rasqc . o

sin8  sin 2¢
. igne %sme
=2mge s\ Tt T T
or
a,sinf @, sin 260 a:n sin né

L'=27rgco 1+K

3. THE EFFECT OF DOWNWASH ON LIFT AND ROLLING MOMENT FOR ELLIPTIC AND
RECTANGULAR WINGS

Downwash occurs with all wings of finite length. Its effect is to reduce the 1ift of the
wing in a certain ratio. The magnitude of this ratio depends upon the form of the wing, the
aspect ratio, and the variation of the geometric angle.of attack along the wing span. To cal-
culate the reducing effect of downwash on the lift and rolling moment in any given case, we cal-
culate the true or actual lift and rolling moment from the effective angle of attack, thus taking
account of downwash. Then we calculate a fictitious lift and rolling moment from the geo-
metrie angle of attack alone, neglecting the effect of the downwash. This fictitious or ideal lift
is the lift that would be produced by a segment of an infinitely long cylindrical wing having the
same geometric angle of attack, the length of the segment being equal to that of the actual
wing. A similar statement applies to the fictitious rolling moment. The ratio of the true
to the fictitious lift is a number less than unity, and we shall call this number the downwash
Jactor for lift. Likewise, the ratio of the true to the fictitious rolling moment gives the down-
wash factor for rolling moment. We now proceed to calculate these factors for elliptic and
rectangular wings.
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ELLIPTIC WING
The density of lift for a twisted elliptic wing has already been found to be

aL a,sin 6 | a, sin 26 @ sin nd |
P 9. 1 2 T e e . ]
L=7,=2 90°<1+KT 142K BT
Since z =1 cos 6, dz= —I sin 6 4 ¢, we have
_ a, sin® § | agsmesm%
Hence
L=2ﬁgcoz(l—f—[{fsinzede+ﬁfsinesin 20 o+ - ) e T
] .
or fo ‘l S -
A iQKZ____--1--__-_"--____-_--_-__(19) o
‘The rolling moment is )
M Sz dl—25q o, Z"f “ﬁ%ﬁ“ﬂﬁé%h)smecoseda S
2
. sz(al sin 6 §m 2 GTazlsm2§6_l_ -)de
or o - - .
M= L QCOZ“ a; Ao - T (20) -

21 F2K) T TTTTTTTRTT TR
The geometric angle of attack for the twisted elliptic wing has likewise been found to be

a_alsin@,azsin%, , @y Sin 7 |
€ sing ' sm@ sin 6

Treating this as the effective angle of attack and substituting it for e, in the formula

) L'=27 o, gc, 7 L
we get, since ¢=¢, sin 6, , .
dL, sinf a,sin286 )
L’g=*d;=2~ qc, sin 6 a;mg + zsin6 + - )
or -
dLg= —2wqe, 1 (a, sin? 0+a, sin §sin 2 64+ - - - - ) db
Hence .
L2 =2nge, Zf(az sin? 0+, sin 4 sin 20+ - - +) d6
a
or

Le=#>qcola, oo ...2(20)
The fictitious rolling moment is
M= Sz dL,==qc, I f(a1 sin 8 sin 26 +a, sin? 264 - .) d8
o]

or
-2 2
Mg=~“_9"2°Z_F‘_3,,,_.,,_,____,-,_,,__________,_(22)10

1t Tn the following pages we shall denote by Ly and M, the fctitious lif§ and rolling moment due to the geometric angle of attack alone.
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Dividing (19) by (21),
1

Tk

A

VOI‘
1
Legr g Lo oo me e e (23)

From this last equation we get the theorem:
The true lift of a twisted elliptic wing can be found by negZectfe'ng the downwash, calculating

the ideal or fictitious lift, and then multiplying it by the factor —— i + 7

This downwash factor is independent of the twist of the wing and depends only on the aspect

ratio, as we shall now show. The number K stands for 4—1"- The aspect ratio for an elliptic

wing has already been found to be 8L, Hence
7('00

760 (n C())

The downwash factor for lift in the case of an elliptic wing is therefore

1 1 7 7 R
T T S )
+a - ]
Dividing (20) by (22), we get
pm o L
M, 1+2K 1+*......._........_..._......_.(25)

or

1
1+E

We thus get a method for calculating the,rolling moment similar to that for calculating
the lift. :

RECTANGULAR WINGS

The downwash factors for rectangular wings can not-be found by the method which has just
been used on elliptic wings, as the distributions of lift for a constant ratio of the effective to the
induced angle of attack are not known for the rectangular wing. Nor do these factors depend
on the aspect ratio of the rectangular wing only, but they will also depend on the djstribution
of the lift along the span. To calculate these factors for rectangular wings we assume several
distributions of Iift, calculate the entire lift and rolling moment, the downwash, and the
corresponding geometric angle of attack; using this geometric angle of attack, we then calcu-
late the ideal or fictitious lift and rolling moment. The downwash factors are then found
by taking the ratio of the true lift and rolling moment to the computed fictitious lift and rolling
moment.

The following calculations were made in order to find out how closely the downwash factors for
rectangular wings agree with those already found for elliptic wings. The assumed distributions
of 1ift for which the calculations have been made are given in Fig. 2.
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@ L’=A\/1—F

r_4Z% [ %
®) L—AZ\/I 7

, 7 e
© L=AZ—2\/1—?
oo, B ?
@ L=Am/1—x—z

© L’=A<1— >\1
% A<1'Z2>\/1

=(e+b)

=(z+c)

@ L =A<%+%)\/1——;= (®+c)

® I A<l+ Zg)\

where A is an arbitrary constant.

=0+

{G)—L 8 592 z‘ Z 458

(b} v}.@

@ > N\

[077—A

(=) ég

7

) —
I v@

i

o)

S

Q

QY -—0

%

[

—a1
Fia. 2

339

Since L= f L’ de, and cmoef L’ dzisrepresented by the algebraic sum of the areas be-
tween L' =f(z} and the z-axs from z= —[ to z= I, the total lift in cases (b), (d), and (&) is zero.

Likewise, since M= f zL’ dz, the total rolling moment is zero in cases (), (¢), and ().

An outline of the calculation of the downwash factors for case (¢) is given below. The
- calculations for the other cases are made in exactly the same Way and will therefore not be

given.
Caleulation for case (e):

A<1—

de i-
Z2
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Substituting this value of %’% in the downwash formula
f HAL dr
47rpV L dr 2 —2

a;dx

(a; ——m)\/l-——

we have

]__ﬁ

=47r—217}/2<“'f+ ~ )\/

Putting z=1u, dz=1du, we get

Y das

e (e Ege

+i 2 d
f (x’l—z)\;:l—%:>

+1 2 d
L)

The chief or principal values of these improper integrals are found to be:

u du

Ll e

Hence the value of wis 4
w= m I+ 2z),

where we have now replaced «’ by .
Let ¢y=chord of the rectangular wing.

Then
L' =2nayqc,=2mqe, (ag—as)

= 27gce, (ag — %) = 2wgc, <ag —

=27qc, <ag—— é—%z I+ 293))-
But L

2
-4 (14 h1-5

Hence

1+z)\/

from which we get

T

u? du T

A
LV T+22) )

_._27rgc0 %~ 3B (Z+2x)>

< 1+z>\/ zz+1zczo (Z+2x)>.

2mqe,

The fictitious lift corresponding to this geometric angle of attack is

2
+ + <1+ z)\/ ~ 5t
L, =f X 2ragqe,dett = ZvrgcoAf

2rqe,

—-A(f \/ szas-i-lf \/ Za:dx-i—zzcz"

or

Ty
I+2a)
Foom),

(Z+2x) dzx,

11 From formula (6).
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The fictitious rolling moment is

s S ) 104 [T 2 o
Mg=f—za:Lgd$=A<f_l Jl—-% xdx—i—-z- . xz\/l—%dz—{-%f_l (Iz+422%) da:>,

Mg=A§'ZZ (1 8¢,

or

+'37 .
For the true lift we have

oo z P, Adl,
L—f_ZL(ZI—f_ZA(l-FT)—\/l—Z—Z de= 5 "

and the true rolling moment is

+1 +1 2 - 2 A,ﬁ_zz
M=f_l fodx:Af_l <x:—%)\/1——%dw=—8—-

Dividing L by Lg, we get

or

_ L
142
a
Dividing A by 1, we get
M1
My . 8, ., 16
I+ 143

The results of the calculations for the other assumed distributions of lift are given in
Table I. In Table IT are given the numerical values of the downwash factors for various
aspect ratios, while Table IIT gives a comparison of rectangular and elliptic wings, the efficiency
of elliptic wings being taken as 100.

The geometric angles of attack for both rectangular and elliptic wings for each of the lift
distributions considered are given on the following page, and the graphs of these angles of
attack are shown in Figure 3.
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ﬂ

]

“h =8 ~E-4 -2 2 4 6.8 4 (Gj o= =B - =& 0 24 E 8

)

r\ . ,/T (c) N~
! ?
{7“0L=A (d/ V—l_A
! !
,43 (e ,Aia
| e
i il M
| |
»%A (9

[774 )
i

F1G. 3. —Graphs of geometric angles of attack for the vari-
ous distributions of lift considered in section 4

GEOMETRIC ANGLES OF ATTACK

RECTANGULAR WING - ELLIPTIC WING

(@) og= 2'rq¢o<\/1 i Co | 21rq00<1 ) CO |
®) ag= 27rqco Z \/1 Z2+T @ = 21rqco l(IT 57

) « 21rqco i3 <\/ z2+7r co 5-3 Zz» | “xﬁ?%?ﬁg <1—% %)2‘1 T

@ =gt (V153 w)) afﬁ,—c;, ¥ <1 R t)

@ e 2"’900<<1+l>\/1 Bt TCO <1+ )) g 271'900(( l>+£@<l+ >>
0 wm((HNVIEE S GHE) | () 5GHY))
@ e 2#900<<l+22>\/1 FTiT 2+ +3l;62>> %= 2ﬁ-q00<<l+lg>+7rca< 2T +3x2>>

0 ef(GENFHIGER) | () F )

These columns give the distribution of geometrm angle of attaek to show the hft dts‘mbumon spccnﬁed
It will be observed that the geometric angles of attack for a glven distribution of 1ift are identical for the two

wing forms, except that the radical term\/l— 7 in the case of reetangular Wlngs is replaced by 1 in the case

of elliptic wings; and since this radical is unity only at the middle of the wing span, it is plain that the geo-
metric angle of attack neecessary for a given lift must be greater in the case of elliptic wings than in the case
of rectangular wings.
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TABLE I
rk//_M—‘ ] -
! | _
| ; Downwash factors Downwash factors
: ; for lift for rolling moment
Lift distribution } [
‘T | Rectan- Elliptic Rectan- i Eliptic |
. gular = gular =
. i wing wing Fing i wing i
E rt l ¥ o f
| =4/1-% Hi=— F
1 ] | e .
z z '
V=4 5l 1 & fi= 16
s Ty I I-rﬁ |I
: 2 3 1 1
L r=aGy T fm— O
L 1-’r‘E -
] H 3 PR S i
| L'=A%\/1—§—, @ =] | .
‘ "i5e. .
' LI o _ 1 fi= R, 1 Q=
; L—.:i(l—rl>'\/1 R 112 e T et
14— & | Ptz | e
¢ ! EL
L D=4 <1+%)-\/1—% fo= f12 ) i
R 175’2 i
’ z =t z* ) a=— |
L=~‘*<7*z‘z)W/1"F =g |
T4— 3a .
] | \ l
QTF).‘/ @ fe—l-:-z_—f;
: : b
! Rolling moment IS zero for this distribution of Lift.
t Lift is zero for this distribution of Lift.
. area 21 81
In the above table a=aspect ratio=——3="> for rectangular wings, — for elliptic wings.
M
TABLE IT

NUMERICAL VALUES OF THE DOWNWASH FACTORS FOR VARIOUS ASPECT RATIOS

- : i T T T .
Lift f\_‘* 4 5 8 . 7 | 8 g . 10 r
N i : .
'
l : A I (Elliptic wing, all distributions.
Efl ,,,,,, ae | 0Tt 070 0TS . 080 | omis [ 0.8 i'{'\ 1_%2 for rectang. ;
| ; i - t
H s v : =45 IE = I N / 2! tor rectan i
 — .625 .676 .74 745 ST .07 [ 4(1+5 )/1-F forrectang. |
1 ; ) ; - — H
%fz ...... Sl L N L : ea2 |7 A{%+f—z>‘/1—%—forrectang.
: | , I ; .
i ~ H ) ! : b i
Moment a'= 154 \ 25 8 914 1024 120 . 13k N
frmnan . 500 g 556 | .60 .636 667 .632 .714 | Elliptic wing, all distributions.
L 500 | .56 .600 .636 667 .68 TS 1—$forrectan£.' :
i . i 1
| L H ] H
Fooe . 469 . 524 .569 07 0 .638 | Le65 | .6S8 A(f‘+,ﬂ_>_‘/1__!_forrectang. :
: i i I S
- Tt a7 lss6 .88, 617 L6 | A5qf1—Efor rectang.
: | . i P ;
T
= Fs 2= 4.5%
420 0.588  0.730

. 970 . 965
a denotes the aspect ratm bf[s

‘g«ég Rectangular cylindrical wing.1?

a’ denotes the aspect ratio of an eltiptic wing having the same value /3¢ as the wing in question.
Sfrefers to @ and f” to a’, which means that either ¢ or &’ has to be inserted in the formula for for f'.

11 A, Betz, Beitrige zur Tragfigeltheorie mit besouderer Beriicksichtigung des einfachen Rechteckigen Fligels.
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TABLE IiI

CORRECTION OF THE DOWNWASH FACTORS FOR LIFT, REFERRING TO THE ASPECT RATIO ¢ OF AN ELLIPTIC,WING
OF EQUAL SPAN AND AREA

Litt a= YO 6 7 8 9 10 Cese

Siflee oot 1000 1. 000 1, 000 1,000 1,000 1000 1. 000 a)

FoHfieememe e eeen —.eer . 947 .952 . 958 . 063 . 966 . 968

27— . 750 779 .800 | . .818 . 834 . 846 . 857 ¢
TABLE IV

CORRECTION OF THE DOWNWASH FACTORS FOR ROLLING MOMENT, REFERRING TO THE ASPECT RATIO ¢/ OF AN
ELLIPTIC WING OF EQUAL SPAN AND MOMENT OF INERTIA

¢ of rectangular wing= 4 5 6 7 8 9 10 Case
Moment . — ”
a’ of elliptic wing= 534 624 8 914 L1 10% 12 1314
Ji2Y S 1000 | L000 | 1000 | L000 | L0600 | 1000 | 1000 | ()
B0/ T . 942 . 948 .954 {a .957 |- .96L . 964 )
F 17/ . 834 .848 .863 874 .882 .802 .898 @
CONCLUSION

The shape of actual airplane wings is somewhere between an ellipse and a rectangle
Hence the error committed by applying to them the formulas valid for the ellipse will be about
half as large on the average as computed in this paper.

The aspect ratio of monoplanes is in the neighborhood of 6. The distribution of lift is
then approximately like (), and then the downwash factor for the lift would be exdct. The
results of Dr. Betz for rectangular wings without warp indicate an error of about 2 per cent.
A distribution much more different from that of an elliptical wing than the actual distribution
is the distribution (f). Iven this distribution for ordinary wings has a downwash factor only
234 per cent different from the universal factor derived from the elliptical shape.

The downwash factor for the rolling moment is of interest for the computation of the
aileron moments and for the investigation of the air forces in certain maneuvers, chiefly during
a roll, which can be approximately obtained by substituting an equivalent warp of the wings.

The latter is best represented by the distribution (b). Then there is no error in substituting
the downwash factor of the elliptical wing of equal span and moment of inertia of the wing
surface with respect to the axis. '

The displacement of the ailerons gives a distribution of lift which might be well represented
by (d). The error for actual wings would then appear to be approximately 7 per cent. By so
much the actual rolling moment is smaller than the rolling moment computed by using the down-
wash factor of the ellipse of equal “inertia ratio” I/b*



